Manufacturing Technologies for MEMS and SMART SENSORS

Dr. H. K. Verma

1

Distinguished Professor (EEE) Sharda University, Greater Noida

(Formerly: Deputy Director and Professor of Instrumentation Indian Institute of Technology Roorkee) website : www.profhkverma.info

CONTENTS

- 1. Grouping of Manufacturing Technologies
- Micro-Machining Technologies

 a. Bulk Micro-Machining Process
 b. Surface Micro-Machining Process
 c. Other Micro-Machining Processes
 d. Surface Bonding Techniques
- 3. Integrated-Circuit Technologies
 a. Thick-Film Technology
 b. Thin-Film Technology
 c. Monolithic-IC Technology

Grouping of Manufacturing Technologies

Two groups of manufacturing technologies used:

Micro-machining Technologies

- Originally developed for producing micro-mechanical components and systems
- Now used in the production of all MEMS-based devices for making the MEMS element
- Integrated-Circuit (IC) Technologies
 - Originally developed for producing integrated circuits (ICs)
 - Now used in the production of all smart sensors (including smart MEMS sensors) for making the micro-electronic circuit
 - Can also produce at the same time any electrical or electronic micro-sensor required in the smart sensor.

Micro-Machining Technologies

Manufacturing Technologies for MEMS & Smart Sensors © 2021: Dr. H. K. Verma

Micromachining Technologies

Bulk Micromachining

- Process is meant to remove a bulk (significant amount) of material from substrate (wafer) by chemical etching
- □ Substrate is usually a silicon crystal
- □ Sometimes, glass, quartz, germanium or gallium arsenide are used
- □ Substrate (wafer) can be etched **from one or both sides**
- Etching is done selectively with a mask and an etchant
- \Box A thin layer of SiO₂ is formed in the top of substrate
- \Box A mask is formed in this SiO₂ layer
- □ Two types of etching processes are used in bulk-micro-machining:
 - Isotropic etching
 - Anisotropic etching

Mask Formation

Masks are needed in all micro-machining and IC processes at several steps

 \Box Mask is made in a SiO₂ (or sometimes Si₂N₃) layer

□ The layer needs to formed **in** the top of substrate

Mask is made by photo-lithographic etching technique

Photo-Lithographic Etching: Process

Steps in Photo-lithographic etching process:

- I. Generate desired pattern (photo-mask with appropriate clear and opaque regions) computer-aided design (CAD) tools
- II. Make a layer of a photo-resist (photo-sensitive material) on SiO_2
- III.Transfer pattern from photo-mask to photo-resist layer using light (process is called as photo-lithography)
- IV. Develop photo-resist layer in a specified chemical solution
- V. Etch the wafer using a suitable chemical etchant to transfer pattern from photo-resist to SiO_2

Thus, a SiO₂-mask has been created on the top surface of the substrate.

Photo-Lithographic Etching: Photo-Resist

Two types of photo-resist are used:

A. Positive photo-resist

Produces same pattern as on photo-mask

B. Negative photo-resist

Produces reverse of the pattern on photo-mask

Isotropic Etching

- Etchants used have equal etching rate for all crystallographic orientations of silicon wafer (crystal)
- Common Etchants (examples)
 Sulfur hexa-flouride (SF6)
 - Hydrogen flouride (HF)
- Structures Produced (examples)
 - Semi-spherical cavity
 - Rim-cantilever

Anisotropic Etching

Etchants used have unequal etching rates for different planes of silicon crystal (wafer)

Common Etchants (examples)

- Ethylene-diamine pyrocatechol (EDP) for SiO₂ mask
- Potassium hydroxide (KOH) for Si3N2 mask
- Structures Produced (example)
 - Diaphragm

Merits and Limitations of Bulk Micro-Machining

Merits of Bulk Micro-Machining:

- Fast etching rate
- Material can be removed in bulk.
- Etching can be done from both sides, if required.
- □ Limitations of Bulk Micro-Machining:
 - Intricate features can't be produced.
 - Material of substrate can be only removed, but no external material can be added (deposited).

Surface Micromachining

Process meant to build intricate 3-dimensional structures by depositing and removing (etching) materials in layers one over the other with the help of masks

- All etching and deposition processes are carried out from one surface only
- Layers are deposited using:
 - Vacuum evaporation, or
 - Chemical vapour deposition
- □ Two types of layers are used:
 - Structural Layer: Retained in the final structure
 - Sacrificial Layer: Sacrificed selectively during the process
- Substrate is usually Si; glass also used
- \Box SiO₂ or Si₃N₂ layer used for masking

Merits and Limitations of Surface Micro-Machining

□ Merits of Surface Micro-Machining:

- Intricate features can be produced.
- Not only the material of substrate can be removed, but external materials can also be added (deposited).
- □ Limitations of Surface Micro-Machining:
 - Because of the slow-etching rate, this technique is not suitable for removing large quantities of materials.
 - Addition and removal of materials are possible from the top side only.

Other Micromachining Processes

- LiGA Process
- DRIE Process
- Plasma etching
- □ Micro-milling

Other Micromachining Processes LiGA Process

- LiGA stands for Lithographie, Galvanik und Abformung
- Process combines lithography, electroplating and moulding
- Uses electroplating to build mechanical structural parts
- For etching, LiGA uses UV-rays (upto 20 μm), or laser (upto 200 μm) or X-rays (upto 500 μm)
- A mould is prepared for mass replication using injection moulding, stamping or some other process.

Advantage: Compared to surface micro-machining, it is capable of thicker structures and faster etching.

Other Micromachining Processes DRIE Process

DRIE stands for Deep Reactive Ion Etching

- A highly anisotropic etching process
- Used to create deep penetration, steep-sided holes and trenches in wafers/substrates, with high aspect ratios
- Developed specially for MEMS requiring these features

Cryogenic-DRIE process:

- The wafer is chilled to -110° C
- This low temperature slows down the chemical reaction that would have produced isotropic etching
- But ions continue to bombard upward-facing surfaces and etch them away
- Consequently, the process produces trenches with highly vertical sidewalls.

Wafer Bonding

- Used for bonding two wafers of same or different materials to produce complex structures
- Common situations of bonding in micro-machining are:
 - Silicon-on-silicon bonding
 - Silicon-on-silicon dioxide bonding
 - Silicon-on-glass bonding

Wafer Bonding Techniques

Adhesive Bonding

Applicable to bonding of wafers of any materials

- An adhesive is applied between two surfaces to be bonded
- □ Adhesives used: glass frit, polymer pastes
- □ Apply pressure around 1 bar
- □ Heat at around 400 °C

Anodic Bonding

Applicable to bonding of wafers of any materials

- Apply a potential difference of around 500V between two surfaces to be bonded
- □ Heat at around 400 °C
- No adhesive
- No pressure

Fusion Bonding

Applicable to silicon-on-silicon bonding and silicon-on-silicon dioxide bonding

- □ Finish the two surfaces to be joined
- Place the two surfaces together
- □ Heat at around 1000 °C in oxygen
- No adhesives
- □ No pressure

Bonding takes place at atomic level through fusion of one silicon dioxide layer with another silicon dioxide layer (either present or created by oxidation)

Integrated-Circuit Technologies

IC Technologies & Capabilities

Capabilities:

- R, C & L
- Conductors
- Sensing elements
- Sensor supports

Capabilities:

- R & C
- Conductors
- Sensing elements

Capabilities:

- •R & C
- Diodes & transistors
- Conductors
- Sensing elements

Thick-Film Technology

Particle Materials for Thick-Film Pastes

Paste Types & Compatible Substrates

Low-Temperature Pastes

- > Melting Point: Less than 250 °C
- Substrate : Plastic materials
 Glass fibre with epoxy Anodized aluminum

Medium-Temperature Pastes

- Melting Point: 500 600 °C
- Substrate: Low carbon steel with porcelain enamel coating

High-Temperature Pastes

- Melting Point: 800 1000 °C
- Substrate : Ceramic

Thick-Film Process

Thick Film Components

- 1. Thick-film resistors (any value)
- 2. Thick-film capacitors (any value)
- 3. Thick-film inductors (small values only)
- 4. Conductors
- 5. Thick-film sensors (see next slide for details)
- 6. Sensor supports, heaters etc.

Thick-Film Sensors

Temperature Sensors: Thick-film RTD Thick-film thermistor Thick-film thermocouple

Pressure Sensors: Thick-film diaphragms Thick-film capacitors Thick-film piezo-resistive sensor Thick-film piezo-electric sensor

Light Sensors: Photo-conductive sensors

Magnetic Sensors: Magneto-resistive sensors

Humidity Sensors: Organic-polymer based sensors

Gas Sensors: Metal-oxide sensors (e.g. SnO₂, ZnO₂)

Advantages of Thick Film Technology

- Almost any material can be deposited as thick film
- Several electrical (resistive and capacitive) sensors can be made using this technology
- Low-value resistances and high-value capacitances possible
- Small inductances are also possible
- Components can withstand high temperatures
- Large voltage / current excitation can be used
- Heaters can also be integrated
- Economical for low-volume production
- Suitable for R & D work on micro-sensors

Limitations of Thick Film Technology

- □ Active components cannot be produced
- □ Size of components is very large
- □ Not suitable for medium and large-scale production

Thin-Film Technology

- □ Film thickness: Less than 1µm to 25µm
- Process: Deposit thin-films by vacuum evaporation
 - or some other technique on a substrate
- Patterns: By masking
- No printing, drying, firing and trimming

Substrate for Thin-Film Components

- High-purity alumina
- Low-alkalinity glass
- Silicon
- □ Silicon oxide

Thin-Film Deposition Techniques

- Vacuum evaporation
- Chemical vapour deposition
- Sputtering
- Plasma deposition
- □ Reactive growth
- Spin casting

Thin-Film Components

- □ Thin-film resistors (any value)
- □ Thin-film capacitors (any value)
- Thin-film conductors
- □ Thin-film sensors

Thin-Film Materials and Sensors

- **For conductors:** Aluminium or gold
- **For resistors:** Nichrome
- For dielectrics: Silicon dioxide
- □ For sensing elements (examples):
 - Strain gauge: Nichrome, polycrystalline silicon
 - RTD: Platinum
 - Gas sensor: Zinc oxide
 - Piezo-resistive pressure sensor: Nichrome, polycrystalline silicon
 - Thermo-anemometric flow sensor: Gold

Advantages of Thin-Film Technology

- Almost any metal can be deposited to produce thin-film sensors
- Several electrical (resistive and capacitive) sensors can be made using this technology
- □ Miniaturization (smaller dimensions than thick-film devices)
- □ Suitable for low as well as high volume production.
 - Because of the former advantage, it is suitable for R & D work on micro-sensors.
 - Because of the latter advantage, it is used for adding lowvalue resistances, high-value capacitors and certain micro-sensing elements, not feasible with monolithic IC technology, to monolithic ICs to produce special smart sensors on a mass scale.

Limitations of Thin Film Technology

- Active components cannot be produced.
- □ Size of thin-film components is much larger as compared to monolithic IC components.

Monolithic IC Technology

- Dimensions: Sub-micrometric, nano-metric
- □ Substrate: Wafer of silicon (less used are Ge and GaAs)
- Capability: R, C, diodes, transistors, conductors and electronic/electrical sensing elements

Basic Processes:

- 1. Epitaxial growth
- 2. Silicon-oxide layer formation
- 3. Photolithographic etching
- 4. Planar diffusion of dopants
- 5. Metallization
- 6. Stitch bonding

Monolithic IC Process: Steps

Advantages of Monolithic IC Technology

Both active and passive devices can be produced

- Electronic micro-sensors (transistors or diodes used as sensors) and electrical micro-sensors (resistive and capacitive sensors) can be produced simultaneously with micro-electronic circuit
- Very high density of devices

Highly economical for mass production

Limitations of Monolithic IC Technology

- Only electronic and electrical micro-sensors (not MEMS) can be produced using this technology
- Resistances in medium-range only
- Capacitances of small values only
- Uneconomical for producing smart sensors in small quantities.

Comparison of IC Technologies

Feature	Thick –Film Tech.	Thin-Film Tech.	Monolithic IC Tech.
Passive components	R, C, L	R, C	R & C with limitations
Active components	No	No	Yes
Conductors	Yes	Yes	Yes
Dimensions	Largest	Large	Small
Electrical sensing elements	Most of materials	Most of materials	Si only
Electronic sensing elements	No	No	Yes
Economic level of production	Small scale only	Small & large scales	Large scale only
Suitability for R&D work	Yes	Yes	Expensive