BASICS OF SENSOR NETWORKS

Dr. H. K. Verma

Distinguished Professor (EEE) Sharda University, Greater Noida

(Formerly: Deputy Director and Professor of Instrumentation Indian Institute of Technology Roorkee)

CONTENTS

- 1. Industrial Data Networks
- 2. LAN Topologies
- 3. Device Level Networks
- 4. 7-Layer OSI Model of Communication System
- 5. Networking of Sensors

Industrial Data Communications

- Communication among computers/ servers/ workstations
- Communication between computer and peripherals
- Communication between computer and intelligent instruments
- Communication among field devices (Factory-floor or field communications) using:
 - Transducer networks or Sensor networks, or
 - > Field-device networks or Device-level networks, or
 - Sensor and actuator networks, or
 - Factory-wide networks

Hierarchy of Industrial Data Networks

Data Networks in Industry

Enterprise Network

Network of the PCs, workstations and servers in Offices and the control terminals (PCs) in Control Room.

Control-Level Network

Network of the control-terminals (PCs) and industrial controllers (PLCs), which are either in Control Room Or On Factory Floor.

Device-Level Network

Network of a controller/PLC/RTU in Control Room with its field devices (Sensors, Actuators, etc.) on Factory Floor.

LAN Topologies

- Basic Topologies
 - 1. Point-to-Point
 - 2. Multipoint
- Multipoint Topologies
 - 1. Bus
 - 2. Ring
 - 3. Star
 - 4. Tree
 - 5. Mesh

Bus (or Multidrop)Topology

- Bus is a linear transmission medium.
- Data flow is bidirectional
- Stations connected through taps taken from bus
- Terminator (T) absorbs signal, thus avoids echos

Ring (or Loop)Topology

- Nodes (computers) are connected in tandem (series) to form closed loop
- Data flows through nodes (computers)
- Data flow is unidirectional
- Each node acts as a repeater
- It receives a data on one link and transmits bit-by-bit on other link

Star Topology

- Network comprised of many point-to-point circuits
- Central node: Hub or switch
- Hub: Operates in broadcasting mode
- Switch: Operates as frame-switching device

Tree Topology

- Generalization of bus topology
- Each branch may have further branches

10

Mesh (or Fully Connected) Topology

- Each station has a bidirectional link to every other station
- Less traffic problems, high reliability, high security
- ❖ Large no. of links: n(n-1)/2 links for `n' nodes
- ❖ Each station must have n-1 I/O ports

Device-Level Wired Network

Control – level network

FD: Field Device (Sensor / Actuator/etc.)

Device-Level Wireless Network

Control – level network

FD: Field Device (Sensor / Actuator/etc.)

Special Requirements of Device Level Networks

- Low latency or small end-to-end delay
- Low bandwidth or data rate
- High data security
- High network security
- Low power consumption or long battery life (for wireless networks only)

Technologies/Protocols for Device-Level Networks

Technologies/Protocols for Wired Networks

- ❖ RS422
- ❖ RSR485
- MODbus
- Foundation Fieldbus
- HART
- CAN
- LON
- BACNet

Technologies/Protocols for Wireless Networks

- Zigbee
- ❖ Wi-Fi
- Bluetooth
- Wireless Fieldbus

7-Layer OSI Model of Communication Systems

- "Open System Interconnection" model
- Prepared and issued by International Standards Organization
- Reference model of communication systems
- Defines functions of a communication system in 7 layers
- ❖ For use as reference or model "to identify and classify the various functions of a given communication system"
- Not a standard or set of prescriptions for a communication system to adhere to
- For any communication system, layers 1 and 7 are essential, while some middle layers may be absent
- ❖ A communication protocol or standard may not define all the 7 layers, it may define as few as one layer.
 16

Sensor Networks © 2014: Dr. H. K. Verma

Data Transfer Between Systems

Application Layer Application Layer Presentation Layer Presentation Layer Session Layer Session Layer Transport Layer Transport Layer Network Layer Network Layer Data-Link Layer Data-Link Layer Physical Layer Physical Layer 17 © 2014: Dr. H. K. Verma Sensor Networks

Functions of Seven Layers

Networking of Sensors

Four Situations:

Situation A – Ordinary Sensor + SC + MPU + Interface

Situation B – Network Sensor + Nothing

Situation C - Smart Sensor + Custom Interface

Situation D – Smart Sensor + IEEE 1451 Interface

Situation A: Ordinary Sensor+SC+MPU+Interface

Advantage

Flexibility

Disadvantages

- Cumbersome
- Only expert can do
- Expensive

Situation B: Network Sensor + Nothing

Advantages

- No other component needed
- Simple plug-&-play
- Fast
- No expertise required

Disadvantage

No flexibility of network protocol

Situation C: Smart Sensor + Custom Interface

Advantage

No SC required

Disadvantages

- Cumbersome
- Only expert can do

Situation D: Smart Sensor + IEEE1451 Interface

Advantages

- No SC required
- Flexibility of network protocol

Disadvantage

❖ Needs STIM & NCAP